Generate sample image dataset using PyTorch
Here is some sample code using PyTorch for generating a sample dataset using the MNIST dataset as an example:
import torch
import torchvision
from torchvision import transforms
# define the transformations to be applied to the data
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])
# load the MNIST dataset
trainset = torchvision.datasets.MNIST(root='./data', train=True, download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True)
# define a function to generate new samples
def generate_samples(num_samples):
samples = []
for i in range(num_samples):
# randomly sample a batch of images from the dataset
images, labels = iter(trainloader).next()
# flatten the images
images = images.view(images.size(0), -1)
# add the images to the list of samples
samples.append(images)
# concatenate the samples into a single tensor
samples = torch.cat(samples, dim=0)
return samples
# generate 100 new samples
new_samples = generate_samples(100)
print(new_samples.shape)
In this code, we first define the transformations to be applied to the data, which includes converting the data to a PyTorch tensor and normalizing the pixel values. We then load the MNIST dataset and define a PyTorch DataLoader to sample batches of data from the dataset.
We then define a function generate_samples
that takes in a number of samples to generate and randomly samples batches of data from the DataLoader. We flatten the images and add them to a list of samples, which we concatenate into a single tensor and return.
Finally, we generate 100 new samples using the generate_samples
function and print the shape of the resulting tensor.